
1
American Institute of Aeronautics and Astronautics

A DESIGN FOR COMPOSING AND EXTENDING VEHICLE MODELS

Michael M. Madden*
NASA Langley Research Center

Hampton, Virginia

Jason R. Neuhaus
Unisys Corporation
Hampton, Virginia

ABSTRACT
The Systems Development Branch (SDB) at NASA
Langley Research Center (LaRC) creates simulation
software products for research.* Each product consists
of an aircraft model with experiment extensions. SDB
treats its aircraft models as reusable components, upon
which experiments can be built. SDB has evolved its
aircraft model design with the following goals:
1. Avoid polluting the aircraft model with experiment

code.
2. Discourage the “copy and tailor” method of reuse.
The current evolution of that architecture accomplishes
these goals by reducing experiment creation to “extend
and compose”. The architecture mechanizes the opera-
tional concerns of the model’s subsystems and encapsu-
lates them in an interface inherited by all subsystems.
Generic operational code exercises the subsystems
through the shared interface. An experiment is thus
defined by the collection of subsystems that it creates
(“compose”). Teams can modify the aircraft subsys-
tems for the experiment using inheritance and polymor-
phism to create variants (“extend”).

ACRONYMS
I/O Input/Output
LaRC Langley Research Center
LaSRS++ Langley Standard Real-Time Simulation

in C++
LOC Lines of Code
SDB Systems Development Branch
UML Unified Modeling Language

* Senior Member, AIAA

INTRODUCTION
SDB defines a project for each experiment (e.g. set of
requirements) and assigns a team (e.g. a group of devel-
opers) to the project. “Project” is used frequently in
place of “experiment” or “team” to differentiate from
the requirements and the team for the aircraft model.
At a basic level, developing a simulation experiment
involves adding, modifying, and/or subtracting behav-
iors to a known aircraft model. When LaRC used a
procedural design paradigm to produce simulation
products, projects employed the following methods to
make some of the experiment modifications:
1. Adding conditional constructs to the “baseline”†

aircraft code. These constructs can be control
statements (e.g. if-then-else) or pre-processor
guards.

2. Tailor the aircraft code for the experiment.
The problem with conditional constructs is that they
pollute the aircraft model with experiment code. Each
simulation experiment inherits code for other simulation
experiments. Defects could be introduced that acciden-
tally activate the code from another experiment. Code
size and complexity also increases over time. This
slows maintenance and heightens the opportunity for
defects. The issue with "copy and tailor"‡ reuse is in-
creased configuration management complexity. Devel-

† “Baseline aircraft code” is an approved version of the
code, with which all projects start.
‡ Based on the configuration management tool that
LaRC used at the time, a more accurate statement would
be “retrieve and modify”. The tool retrieved the base-
line file and applied a modification file to it that re-
sulted in the tailored file.

2
American Institute of Aeronautics and Astronautics

opers may have to reconcile conflicts between project
changes and updates to the aircraft code. If a project
creates a desirable feature (i.e., a feature that other pro-
jects want included in the AircraftModel), extracting
that feature from the other project modifications could
take considerable effort and testing.

 When LaRC re-engineered the simulation framework to
object-oriented technology, the architecture had a goal
to avoid the need to copy aircraft code or to pollute it
with project-specific items. This paper describes the
current evolution of that architecture. The discussion
employs the following conventions to keep text concise.
“ClassName object” designates an object created from
ClassName or its descendents. “ClassName derivative”
indicates any class descended from ClassName.
Method names that appear in italics are abstract inter-
faces that must be defined by descendent classes.
Method names that appear in bold are concrete defini-
tions of an abstract interface. The diagrams use the
Unified Modeling Language (UML) notation.1

AIRCRAFT DECOMPOSITION
SDB builds all of its simulation products using an ob-
ject-oriented framework called the Langley Standard
Real-Time Simulation in C++ (LaSRS++).2 All aircraft
models derive from classes within LaSRS++. Figure 1
illustrates the structure of LaSRS++ aircraft§. An air-
craft model is composed of three major parts:
1. Subsystem models descended from Simulation-

Model. Aerodynamic models and engine models
are examples of subsystem models.

2. Mediator classes descended from VehicleSystem.
VehicleSystems follow the mediator design pattern
to decouple subsystem models from other parts of
the aircraft.3,4 VehicleSystems construct the sub-
system model and handle I/O for the subsystem
model. Cunningham covers the relationship be-
tween VehicleSystem derivatives and subsystem
models in more detail.4 In figure 1, B757Aero-

§ The figure is a simplified representation of the archi-
tecture for the purposes of discussion. Some intermedi-
ate classes and some relationships are not shown.

Figure 1 Aircraft Decomposition in LaSRS++

Vehicle VehicleSystem

Aircraft
model.

Project Model.
Acronym: PAD

Boeing757 B757AeroModelB757AeroSystem

AeroModelAeroSystemAircraft

SimulationModel

B757Pad B757PadAeroModelB757PadAeroSystem

Replaces
B757AeroSystem with
B757PadAeroSystem

Adds increments to
aerodynamic coefficients
computed by the base
class B757AeroModel

Adds logic for retreiving
and inserting additional
inputs for
B757PadAeroModel.

Inheritance

Aggregation

Class

Unidirectional
Association

Legend

3
American Institute of Aeronautics and Astronautics

System descends from VehicleSystem. It creates
the B757AeroModel object. It retrieves, from vari-
ous sources, the inputs to B757AeroModel. It
feeds these inputs into the B757AeroModel object
and executes the model. Lastly, the B757Aero-
System makes the model’s outputs available to ob-
jects (e.g. other VehicleSystems).

3. The composite class descended from Vehicle. This
paper will refer to the composite class as Aircraft-
Model. The AircraftModel represents the entire
aircraft. AircraftModel aggregates the VehicleSys-
tem objects that, in combination, model the given
aircraft. This paper covers the evolution of the re-
lationship between Vehicle objects and VehicleSys-
tem objects that enable verbatim reuse of Aircraft-
Model while maintaining separation between air-
craft code and experiment logic. In figure 1, Boe-
ing757 is the AircraftModel.

When a project extends the aircraft model for an ex-
periment, the project begins by deriving a class from the
AircraftModel. This paper will refer to the derived
class as the ProjectModel. The ProjectModel starts
with the default composition of VehicleSystem objects
defined by the AircraftModel. The ProjectModel can
then modify this composition as required for the ex-
periment. The ProjectModel has three basic options to
change the composition: add, replace, or subtract Vehi-
cleSystem objects.

Figure 1 uses a fictitious project, the Porous Airfoil
Demonstrator (PAD). PAD will evaluate the effects of
adding passive porosity to a Boeing 757. PAD has
modeled porosity effects as increments to the aerody-
namic coefficients. The project team begins by deriving
a B757PadAeroModel class from B757AeroModel.
B757PadAeroModel inherits the aerodynamic proper-
ties of an unmodified Boeing 757. The class then adds
the computations for modeling porosity and sums the
increments with the basic Boeing 757 coefficients. The
team next creates the B757Pad and B757PadAeroSys-
tem classes. B757Pad represents the tailored aircraft
model. It modifies the Boeing757 model by replacing
the default B757AeroSystem with the B757PadAero-
System. B757PadAeroSystem creates the B757Pad-
AeroModel. B757PadAeroSystem derives from B757-
AeroSystem because the class reuses all of the logic

from B757AeroSystem that feeds inputs into the base
class portion of B757PadAeroModel, i.e. B757Aero-
Model. Yet, B757PadAeroSystem must provide any
additional inputs for the passive porosity model.
B757PadAeroSystem may provide additional outputs if
the porosity increments to aerodynamic coefficients are
required elsewhere¶.

The example shows that the LaSRS++ architecture uses
inheritance to reuse and extend behavior in all three
major subdivisions of an aircraft model: the vehicle, the
vehicle system, and the subsystem model. Inheritance
acts as a substitute for conditional statements that were
used in the procedural paradigm. Inheritance leaves the
AircraftModel code unchanged. All code additions for
the experiment are isolated in the derived classes. Ex-
periment code is incorporated into the product only if
the derived classes are linked into the product.

GENERALIZING AIRCRAFT BEHAVIOR
The aircraft decomposition in LaSRS++ is not sufficient
to avoid copy and tailor. In earlier LaSRS++ designs,
the AircraftModel and ProjectModel were responsible
for operating their composition of VehicleSystem ob-
jects. The AircraftModel would contain the logic for
operating the default composition of VehicleSystem
objects. The ProjectModel, in changing the composi-
tion of VehicleSystem objects, would have to provide
modified operational logic. In these earlier designs,
projects overrode the AircraftModel logic with a tai-
lored copy that was placed in the ProjectModel. Thus,
the "copy and tailor" method of reuse crept into the
normal process of creating ProjectModels.

Removing "copy and tailor" from the process of creat-
ing ProjectModels required architectural enhancements
to the current decomposition. The early projects were
examined for emerging patterns of VehicleSystem op-
eration#. Five basic actions were identified:

¶ Many LaSRS++ designers choose to make the outputs
available by providing a constant reference to the
underlying model. In this example,
B757PadAeroSystem would provide a constant refer-
ence to B757Pad-AeroModel.
Initialization actions were also identified and mecha-
nized. Initialization is not covered due to lack of space

4
American Institute of Aeronautics and Astronautics

• The operational code must execute the VehicleSys-
tem objects in the correct order.

• The operational code must call the update method
defined by each VehicleSystem object.

• The operational code must execute each Vehicle-
System object under the correct circumstances.
LaSRS++ has different modes of execution (e.g.
RESET, HOLD, OPERATE). It may be incorrect
for a VehicleSystem to update in each mode. For
example, does the object execute in RESET mode
as well as OPERATE mode?

• The operational code must link VehicleSystem ob-
jects to the correct input sources. As stated earlier,
VehicleSystem objects act as mediators for a com-
panion subsystem model.

• The operational code must acquire VehicleSystem
outputs that affect behavior of the vehicle.

The first three actions can be categorized as execution,
the fourth deals with inputs, and the last deals with out-

and because the mechanisms are similar to those de-
scribed for operation.

puts. The design enhancements captured these actions
as new abstractions, i.e. new attributes and operations in
the VehicleSystem and Vehicle classes. The purpose of
the new abstractions was the development of generic,
reusable operation code that could be pushed into the
LaSRS++ framework. Developers would no longer
create operational code in the AircraftModel and Pro-
jectModel classes. The primary responsibilities of Air-
craftModel and ProjectModel would reduce to defining
the VehicleSystem composition. The new design would
remove the need to "copy and tailor" while simplifying
the work in creating new ProjectModels.

Figure 2 illustrates the new design. The Vehicle base
class manages a list of the VehicleSystem objects that
define the model. This list is named the system_list.
Vehicle contains methods that manipulate its sys-
tem_list and that execute behaviors for all items on the
list. These methods are identified and described in the
sections that follow. Vehicle also contains generic op-
erational code for operating the VehicleSystems in the
various simulation modes. These methods begin with
the prefix ‘do’, e.g. doResetCalc(). VehicleSystem con-

Figure 2 Detailed Vehicle-VehicleSystem Design

UpdateSituation

DO_RESET = 0
DO_TRIM = 1
DO_HOLD = 2
DO_OPERATE_FORCE = 3
DO_OPERATE_LAST = 4
PROPAGATE_STATE = 5
VEHICLE_EOM_FORCE = 6
VEHICLE_EOM_LAST = 7

(from VehicleSystem)

<<enum>>

Vehicle

clearVehicleSystemList() : void
linkSystems() : void
registerVehicleSystem(vehicle_system : VehicleSystem*) : void
replaceVehicleSystem(replacement_system : VehicleSystem*, replaced_system : VehicleSystem*) : void
unregisterVehicleSystem(vehicle_system : VehicleSystem*) : void
updateSystems(situation : unsigned int) : void
<<const>> areRegisteredVehicleSystems() : bool
<<virtual>> doHoldCalc() : void
<<virtual>> doOperateCalc() : void
<<virtual>> doResetCalc() : void
<<virtual>> doTrimCalc(til_converged : bool) : void
<<virtual>> propagateState() : void
<<virtual>> vehicleEOM() : void

VehicleSystem

putForces(pounds_force : const Vector<double>&) : void
putMoments(pounds_force_foot : const Vector<double>&) : void
callUpdateNow(situation : const UpdateSituation&) : void
setUpdateSituation(situation : const UpdateSituation&, active : bool) : void
<<abstract>> update() : void
<<const>> getForces() : const Vector<double>&
<<const>> getMoments() : const Vector<double>&
<<const>> hasForcesMoments() : bool

0..*

1

+system_list
0..*

1

1

1

1

-vehicle_ptr

1

5
American Institute of Aeronautics and Astronautics

tains an abstract interface for the services that are re-
quired by the generic operational code in Vehicle. The
next five sections look at how the design addresses each
of operational actions.

Order of Execution (Execution)
The order in which VehicleSystem objects execute is
important. Some VehicleSystem objects provide inputs
to other VehicleSystem objects. For example, the
B757AeroSystem requires control surface inputs for the
B757AeroModel. The control surface inputs are com-
puted when B757ControlSystem is executed. In
LaSRS++, the B757ControlSystem must execute before
the B757AeroModel. The Vehicle class equates order
of execution with order of registration. When the Ve-
hicle object constructs each VehicleSystem object, the
Vehicle object registers the VehicleSystem object using
Vehicle::registerVehicleSystem(). This method adds
the VehicleSystem object to the end of system_list. The
Vehicle object will execute the VehicleSystem objects
in the order on the system_list.

The registerVehicleSystem() calls made by the Air-
craftModel class represent the default execution order
for all variations of that aircraft. The Vehicle class pro-
vides methods that allow the ProjectModel to change
the default registration order. If the ProjectModel
wants to replace a VehicleSystem object created by the
AircraftModel, it calls Vehicle::replaceVehicle-
System(). In the example, B757Pad would call Vehi-
cle::replaceVehicleSystem() to replace the B757Aero-
System created by its parent, Boeing757, with
B757PadAeroSystem. B757PadAeroSystem will now
be executed at the same position in the system_list that
was occupied by B757AeroSystem.

If the ProjectModel needs to reorder the list, then the
ProjectModel can call Vehicle::clearVehicleSystem-
List() to empty the list and call Vehicle::registerVe-
hicleSystem() to add VehicleSystem objects back onto
the list in the desired order. Being a child of the Air-
craftModel, the ProjectModel has access to all of the
VehicleSystem objects created by the AircraftModel.
Therefore, it can combine the AircraftModel’s Vehicle-
System objects with its own VehicleSystem objects
when it reorders the list.

Invoke the Correct Behavior (Execution)
Each VehicleSystem object has unique behaviors. But,
in simple terms, they perform the same action: populate
the subsystem model inputs and execute the subsystem
model. Thus, the same meaningful name can be used to
describe the action for all VehicleSystem objects. The
design defines an abstract method for invoking the ac-
tion, VehicleSystem::update(). Each VehicleSystem
derivative defines that method to execute its own unique
behaviors. This object-oriented mechanism is called
polymorphism. When the client code calls the update()
method, the actions that are actually taken depend on
the object upon which the method is invoked. This al-
lows generic code to invoke the same action on a col-
lection of objects through its common ancestor but al-
lows each object to uniquely respond. The Vehicle’s
generic code does not directly call this method, but it
plays an important role in abstracting “Operational
Situations” described next.

Operational Situations (Execution)
LaSRS++ has several operational modes. Within each
of these modes, there may be different points, at which
VehicleSystems are run. These points are called “op-
erational situations” in this paper. The VehicleSystem
design captures these operational situations in the enu-
meration VehicleSystem::UpdateSituation. The opera-
tional situations for LaSRS++ are defined in Table 1.

The VehicleSystem object defines the operational situa-
tions in which it runs by calling VehicleSystem::set-
UpdateSituation(). When each operational situation is
encountered, the generic operational code in Vehicle
calls the callUpdateNow() method on every registered
VehicleSystem object. The code passes an Update-
Situation value as an argument to VehicleSystem::call-
UpdateNow(). Each VehicleSystem object compares
the situation against those it has defined. If there is not
a match, the VehicleSystem object returns without tak-
ing an action. If there is a match, the object runs the
abstract update() method. This is where the polymor-
phic VehicleSystem::update() plays its role. Vehicle-
System::callUpdateNow() is generic, non–polymorphic
code because it relies on the abstract interface Vehicle-
System::update() to execute the behavior appropriate to
the object.

6
American Institute of Aeronautics and Astronautics

If a ProjectModel wants to add or subtract an opera-
tional situation for a VehicleSystem object, it calls Ve-
hicleSystem::setUpdateSituation(). This method takes
two arguments, an UpdateSituation value and a Boolean
that adds the situation when true and subtracts it when
false.

In the example, B757AeroSystem sets the following
operational situations on itself: DO_OPERATE_
FORCE and VEHICLE_EOM_FORCE. When the
simulation is running in OPERATE mode, Vehicle::do-
Operate() first computes the external forces and mo-
ments on the vehicle. It calls updateSystems(DO_OP-
ERATE_FORCE). This method, in turn, calls callUp-
dateNow(DO_OPERATE_FORCE) on every Vehicle-
System object. The B757AeroSystem will respond by
executing B757AeroModel. Before Vehicle::doOp-
erate() exits, it will call updateSystems(DO_OP-
ERATE_LAST). B757AeroSystem will respond by
performing no actions because it has not defined DO_
OPERATE_LAST as an operational situation for itself.

One weakness to this design is that it assumes the same
execution order holds for all operational situations.
This has been true for all of the AircraftModels and
ProjectModels that SDB has created. If an aircraft or a
project must use a different execution orders for each
operational situation, the operational methods (doRe-
set(), doOperateCalc(), etc.) remain virtual so that their
behaviors can be overridden by an AircraftModel or
ProjectModel. The VehicleSystem design could be
enhanced to add different execution orders for different
operational situations. But, SDB decided that the addi-

tional complexity was unwarranted for a feature that
might never be exercised.

Establishing Communications (Input)
The major role of the VehicleSystem object is as an
agent for the SimulationModel object that handles the
SimulationModel object’s I/O. The VehicleSystem
object knows the source of each input to the Simula-
tionModel object. It feeds those inputs into the Simula-
tionModel object and then executes the model. This
keeps the SimulationModel class decoupled from other
parts of the ProjectModel. The SimulationModel class
can more easily be unit tested in isolation and can be
reused in other ProjectModels.4

The VehicleSystem object must build connections to
those input sources. The connection usually takes the
form of a pointer or reference to the source. Such links
could be established by passing the source reference as
an argument to the VehicleSystem derivative’s
constructor. However, all sources of a VehicleSystem
object must be constructed prior to the VehicleSystem
object for the references to be valid. The result imposes
a construction order based on association. It also as-
sumes that there is a possible construction order, in
which all input sources for each VehicleSystem object
will be valid. This is not the case when VehicleSystem
objects associate bidirectionally or when a circular as-
sociation exists among a collection of VehicleSystem
objects. For example, B757AeroSystem receives inputs
from B757ControlSystem; and B757ControlSystem
receives inputs from B757AeroSystem. To accommo-
date all possible association patterns, establishing com-

Table 1: Operational Situations
Operational Situations Description
DO_RESET RESET mode after the scenario has been defined
DO_TRIM TRIM mode after the equilibrium computation for the frame is complete
DO_HOLD HOLD mode
DO_OPERATE_FORCE The force computation in OPERATE mode
DO_OPERATE_LAST After the acceleration computation in OPERATE mode
DO_PROPAGATE_STATE After the integration of the Vehicle states while in OPERATE mode.
VEHICLE_EOM_FORCE During the force computation when in the equilibrium computation of TRIM

mode or the derivative computation of LINEAR_MODEL mode.
VEHICLE_EOM_LAST After the acceleration computation when in the equilibrium computation of TRIM

mode or the derivative computation of LINEAR_MODEL mode.

7
American Institute of Aeronautics and Astronautics

munication must be broken out as a distinct behavior
from composition.

The VehicleSystem class provides the abstract method
setLinks() for this purpose. The VehicleSystem deriva-
tive defines setLinks() to establish the connections to
other VehicleSystem objects that provide the input data
for its companion model. The AircraftModel and Pro-
jectModel objects maintain accessors** to each Vehi-
cleSystem object they create. The concrete setLinks()
calls these accessors to obtain the required sources.
The Vehicle class provides the linkSystems() method to
invoke setLinks() on each object that appears on the
system_list.

** An accessor is a method that returns a class attribute.
In this case, the accessor is returning a pointer or refer-
ence to a VehicleSystem object contained by the class.

For example, the B757AeroModel needs the con-
trol surface deflections to compute the aerody-
namic forces. The control surface deflections are
stored in B757ControlSystem. The Boeing757
constructs both the B757ControlSystem and
B757AeroSystem. After it has registered the
systems, it calls Vehicle::linkSystems(), which
calls setLinks() for each system on its list.
B757AeroSystem::setLinks() calls Boeing757::
getControlSystem() to obtain and store a refer-
ence to the B757ControlSystem. B757AeroSys-
tem will use this reference in its update() method
to retrieve the control surface deflections and
insert them into the B757Aero-Model object.

The design can also handle any necessary “rewir-
ing” when the ProjectModel replaces a Vehicle-
System object inherited from the AircraftModel.
Figure 3 provides an example. Suppose a project
creates an extended control system to replace the
B757ControlSystem. This ProjectControlSystem
would derive from B757ControlSystem. The
Boeing757 class constructor will connect the
B757AeroSystem to the B757ControlSystem. In
replacing B757ControlSystem, the ProjectModel
will want B757AeroSystem to receive its inputs
from the ProjectControlSystem. Under early
LaSRS++ designs, the ProjectModel would con-

tain code that replaces the value of B757AeroSystem’s
pointer to the B757ControlSystem with the address of
the ProjectControlSystem. Under the new design, Air-
craftModel allows the ProjectModel to replace the val-
ues of its VehicleSystem pointers with the address of
project objects. The ProjectModel constructor would
call Boeing757::putB757ControlSystem(&ProjectCon-
trolSystem). Then Boeing757::getB757ControlSys-
tem() would return the address of ProjectControlSys-
tem. How the implementation accomplishes the rewir-
ing is more complex than this call. The ProjectModel
constructor starts by calling the Boeing757 constructor.
The Boeing757 constructor creates and registers the
B757ControlSystem and B757AeroSystem objects.
The constructor then calls Vehicle::linkSystems(),
which invokes B757AeroSystem::setLinks(). B757-
AeroSystem::setLinks() calls Boeing757::getB757-
ControlSystem(), which returns the address of the

 : ProjectModel : B757AeroSystem : B757ControlSystem : ProjectControlSystem

ProjectModel()

Register
B757AeroSystem

Register
B757ControlSystem

Returns address of
B757ControlSystem object

ProjectControlSystem()

This time returns address of
ProjectControlSystem. B757AeroSystem
rewired to correct source.

Replaces B757ControlSystem object
with ProjectControlSystem object

Boeing757()

B757AeroSystem()

B757ControlSystem()

registerVehicleSystem(VehicleSystem*)

registerVehicleSystem(VehicleSystem*)

linkSystems()

setLinks()

setLinks()

getB757ControlSystem()
End of Boeing757 Constructor.
Control returned to
ProjectModel constructor.

replaceVehicleSystem(VehicleSystem*, VehicleSystem*)

putB757ControlSystem()

linkSystems()
setLinks()

setLinks()

getB757ControlSystem()

Figure 3 Establishing and Rewiring Connections

8
American Institute of Aeronautics and Astronautics

B757ControlSystem object. This is not the desired re-
sult. However, control is later returned to the Project-
Model constructor. The ProjectModel constructor cre-
ates the ProjectControlSystem object. It calls Vehi-
cle::replaceVehicleSystem() to replace the B757-
ControlSystem with the ProjectControlSystem. It also
calls Boeing757::putB757ControlSystem() to replace
the address of the B757ControlSystem object with the
address of the ProjectControlSystem object. Then, the
constructor calls Vehicle::linkSystems(). B757Aero-
System::setLinks() will be re-invoked. When Boe-
ing757::getB757ControlSystem() is called this time, the
address of ProjectControlSystem is returned. The nec-
essary rewiring is done. In other words, the calling the
ProjectModel constructor results in two passes of Vehi-
cle::linkSystems(). The first pass sets up links as de-
fined by the AircraftModel. The second pass allows the
project to redefine the links.

Influencing Vehicle Behavior (Output)
A large amount of data interaction can occur in an air-
craft model. As explained in the prior section, the Ve-
hicleSystem handles the interactions between subsys-
tems. Only the interaction between the subsystem
model and the Vehicle object remains. The Vehicle
class embodies the basic equations of motion. Thus, the
only subsystem outputs that concern the Vehicle are
inputs into the equations of motion. These are mass
properties††, forces, and moments.

LaSRS++ treats mass properties as a special subsystem
that is required of all concrete descendents. The Vehi-
cle class has, as an attribute, a pointer to a MassProper-
tiesSystem. It uses this pointer directly to retrieve mass
properties when computing accelerations. Vehicle de-
rivatives can set this pointer by calling Vehicle::put-
MassPropertiesSystem().

Forces and moments, on the other hand, can potentially
be produced by any subsystem. Typically, more than
one subsystem contributes. In early LaSRS++ designs,
retrieving and summing the force and moment contribu-
tions from the subsystems was done as the definition of
the abstract method Vehicle::forcesMoments(). Like the
operational methods, explicit calls to the subsystem

†† Mass, center of gravity, and moments of inertia.

models’ force and moment accessors were placed here.
If the ProjectModel added or replaced subsystems that
produced forces and moments, the ProjectModel had to
copy AircraftModel::forcesMoments() and make
modifications.

The updated design mechanizes the collection of forces
and moments. The VehicleSystem class defines stan-
dard methods for derived classes to set a force and a
moment. These are VehicleSystem::putForces() and
VehicleSystem::putMoments(). The class also provides
companion accessors that allow the Vehicle object to
retrieve forces and moments. These are VehicleSys-
tem::getForces() and VehicleSystem::getMoments(). In
the example, the B757AeroSystem communicates the
aerodynamic forces and moments by adding calls to
VehicleSystem::putForces() and VehicleSystem::put-
Moments() in its update() method.

PUTTING IT ALL TOGETHER
The mechanization of each action has been detailed.
But, how has the design improved overall aircraft mod-
eling and project extensions? In earlier versions of
LaSRS++, aircraft model construction would involve
the following steps:
1. The subsystem developer creates the subsystem

class and its VehicleSystem companion.
2. The vehicle integration developer creates the Air-

craftModel class with a shell constructor, destruc-
tor, operational methods [e.g. doReset()], and
forcesMoments().

3. In the AircraftModel constructor, add code for con-
structing the VehicleSystem object and for linking
the VehicleSystem object to its sources.

4. In each appropriate AircraftModel operational
method, add code to call the VehicleSystem ob-
ject’s execution method.

5. In forcesMoments(), add explicit calls to those
VehicleSystem objects that produces forces and
moments.

6. Combine the code changes for each of the Vehicle-
System objects and verify placement and order of
VehicleSystem execution calls in each Aircraft-
Model operational method.

Because adding a VehicleSystem to the AircraftModel
required changes to numerous AircraftModel methods,

9
American Institute of Aeronautics and Astronautics

creating the AircraftModel required significant collabo-
ration among the subsystem developers and the integra-
tion developer. Either the subsystem developers made
their changes directly to the AircraftModel and the inte-
gration developer merged them together or the integra-
tion developer added the code for one VehicleSystem
object at a time in consultation with each subsystem
developer.

Since each AircraftModel defined their operational
methods, small variations in the operational methods
did appear between AircraftModels‡‡. These variations
sometimes caused confusion for developers as they
moved from one AircraftModel to the next. This confu-
sion sometimes manifested itself in code defects.

To extend the AircraftModel in early versions of
LaSRS++, the Project Model would perform the follow-
ing steps:
1. The subsystem developer creates the extended or

additional subsystem and its VehicleSystem com-
panion.

2. The vehicle integration developer creates a Pro-
jectModel with a shell constructor and destructor.

3. The integration developer copies the Aircraft-
Model’s operational methods that will be extended.
The integration developer also copies forcesMo-
ments() if applicable.

4. In the ProjectModel constructor, add code to con-
struct the new VehicleSystem objects and to link
those new objects to their sources.

5. Add code to rewire source inputs for inherited Ve-
hicleSystem objects if necessary.

6. In each operational method, add/replace Vehicle-
System execution calls as appropriate.

7. In forcesMoments(), add/replace accessors to Ve-
hicleSystem forces and moments as appropriate.

8. Combine the code changes for each of the Vehicle-
System objects and verify placement and order of
VehicleSystem execution calls in each Project-
Model operational method.

Whenever the operational method in the AircraftModel
changes, the ProjectModel will have to replicate the

‡‡ This was particularly true of the doReset() method.
Differences in how AircraftModels handled scenario
definition and initialization were prevalent.

change. Like the AircraftModel, ProjectModel creation
required a significant collaborative effort among the
subsystem developers and integration developer.

The updated design introduces generic operational code
that can be moved into the Vehicle class. Figure 4
shows the code for Vehicle::doOperateCalc(). The
aircraft and project teams are freed from writing opera-
tional code. This provides a very modest code savings
of ~200 LOC for each aircraft and project. The greater
benefits lie in the standardization of operation and in
releasing the projects from duplicating the aircraft’s
operational code. Every aircraft and project now oper-
ates in the exact same manner. Defects rooted in confu-
sion about operational differences disappear. Projects
no longer copy the aircraft’s operational code. There-
fore, they no longer need to be concerned with migrat-
ing AircraftModel updates into the ProjectModel.

The updated design confines the work of defining the
aircraft or project model to the constructor. Aircraft
and project models are defined by the composition of
the VehicleSystem objects that they create. Aircraft-
Model construction now comprises the following steps:
1. The subsystem developer creates the subsystem

class and its VehicleSystem companion. The de-
veloper codes the connections to input sources in
the setLinks() method. The developer specifies the
execution situations by making setUpdateSitua-
tion() calls in the constructor. If the VehicleSystem
derivative produces forces, the developer adds put-
Forces() and putMoments() calls in the update()
method.

2. The vehicle integration developer creates the Air-
craftModel with a constructor and destructor.

3. In the constructor, the integration developer creates
each VehicleSystem derivative. Then, the devel-
oper registers each one in the order of their execu-
tion by calling Vehicle::registerVehicleSystem().
Afterward, the developer adds a call to Vehi-
cle::linkSystems(), which establishes the input con-
nections for each VehicleSystem object.

Adding a VehicleSystem object to the AircraftModel
now requires two lines, a creation line and a registration
line in the constructor. The vehicle integration devel-
oper can do this alone. Only the order of registration
needs to be verified. The updated design has more

cl
d
er
ti
o
d
th
o
w
d

T
ti
1

2

3

// This method updates all vehicle systems marked for update in the current situation.
void Vehicle::updateSystems(unsigned int situation)
{
 list<VehicleSystem*>::iterator iterator;
 for(iterator = system_list->begin(); iterator != system_list->end(); iterator++)
 {
 (*iterator)->callUpdateNow(static_cast<VehicleSystem::UpdateSituation>(situation));
 }
}

// The method immediately returns if the vehicle is operating off of a playback file.
// Otherwise, the method retrieves cockpit inputs. It operates VehicleSystems marked for
// update prior to summing the forces and moments. It computes the forces, moments, and
// accelerations. Then, it operates VehicleSystems marked for update after the computation
// of accelerations.
void Vehicle::doOperateCalc()
{
 // If a playback file determines the vehicle's behavior, exit.
 if (getPositionalModelPlayback()->isPlayback()) return;

 // If a vehicle limit was hit in an earlier frame, the vehicle must return to
 // RESET mode before it can operate again.
 if (vehicle_limits && vehicle_limits->limitViolation()) return;

 processCockpitInputs(); // Read cockpit inputs
 updateSystems(VehicleSystem::DO_OPERATE_FORCE); // Calculate forces and moments
 forcesMoments(); // Sum forces and moments.
 calcAccel(); // Calculate accelerations.

 // Update systems that must operate between acceleration calculation and integration.
 updateSystems(VehicleSystem::DO_OPERATE_LAST);
10
American Institute of Aeronautics and Astronautics

eanly separated integration from local VehicleSystem
erivative concerns. Order of execution is the only op-
ational decision that cannot be made before integra-
on because it depends on the set of VehicleSystem
bjects. All other operational decisions can be made
uring the design of the VehicleSystem derivative. In
e updated design, the subsystem developer captures

perational decisions in the VehicleSystem derivative
ithout a need to coordinate work with other subsystem
evelopers.

he updated design also simplifies ProjectModel crea-
on:
. The subsystem developer creates the subsystem

class and its VehicleSystem companion. The de-
veloper codes the operational decisions as de-
scribed in first step for the AircraftModel.

. The vehicle integration developer creates the Pro-
jectModel with a constructor and destructor.

. In the constructor each VehicleSystem object is
created. If the object is an addition to the Air-
craftModel, registerVehicleSystem() is called. If
the object is intended as a replacement, replaceVe-

hicleSystem() is called and the appropriate mutator
is called to change the replaced VehicleSystem ob-
ject’s address with that of its replacement. Vehi-
cle::linkSystems() is called to establish new con-
nections and rewire old connections.

Except for the decision of whether the new VehicleSys-
tem is an addition or replacement, creation of the Pro-
jectModel differs little from creation of the Aircraft-
Model. It is simpler than the old design. It also does
not require code copying. ProjectModel construction
also retains the clean separation of integration decisions
from operational decisions that are local to the Vehicle-
System derivative.

FUTURE WORK
The VehicleSystem design could be expanded further to
add multi-rate and load balancing features. Multi-rate
could encompass both super-rating (execute more than
once per frame) and sub-rating (execute once per inte-
gral multiple of frames). The VehicleSystem could
contain attributes that specify its frequency of operation.
The generic code in the Vehicle class could use this
information to determine whether and how many times

}

Figure 4 Example of Generic Operational Code

11
American Institute of Aeronautics and Astronautics

to run a VehicleSystem object at each execution event.
The Vehicle class could also load-balance VehicleSys-
tem objects across frames if desired. The load-
balancing algorithm could be incorporated within regis-
terVehicleSystem() or as a separate step.

CONCLUSIONS
Part of the evolution of LaSRS++ has been a focus on
reducing the amount of duplication required to produce
aircraft models and project models. LaSRS++ employs
inheritance to reuse and extend aircraft models for ex-
periments. Inheritance replaces the use of conditional
statements or pre-processor directives that pollute the
aircraft code with project-specific extensions. How-
ever, “copy and tailor” of operational code remained
part of the extension method for projects in early
LaSRS++ designs. The previous VehicleSystem design
described by Cunningham has been expanded to
mechanize the five operational decisions for subsystem
models (i.e. the VehicleSystem objects): invoke the
correct behavior, execute in the correct order, execute at
the right event, establish communications, and influence
vehicle behavior.4 Defining mechanisms for these ac-
tions have produced two benefits.
1. The mechanisms allowed the creation of generic

operational code in the Vehicle class that is appli-
cable to the majority of aircraft and project models.
Developers have been freed from writing opera-
tional code. Vehicle development has mostly been
reduced to coding and composing VehicleSystem
objects. Moreover, the generic code creates a stan-
dard for vehicle model operation.

2. Work is more cleanly divided between subsystem
creation and integration. Of the five operational
decisions, only order of execution must be estab-
lished during integration. Subsystem developers
can encode the other four decisions in the Vehicle-
System derivative. Thus, a vehicle integration de-
veloper could compose the aircraft/project model
from the VehicleSystem objects without knowing
the details of these objects. The vehicle integration
developer only needs to know the order of execu-
tion. Developers do not have to coordinate the
coding of any single class, in particular the Air-
craftModel or ProjectModel class. This reduces

the possibility of errors from conflicting code
changes.

In its evolution, the LaSRS++ architecture has reduced
project creation to “extend and compose”. Projects first
use inheritance and polymorphism to extend aircraft
model classes with modified behaviors. Then, the pro-
jects define themselves through their composition of
aircraft and project-extended components.

BIBLIOGRAPHY
1. Douglas, B. Real-Time UML. Addison-Wesley,

Reading, Massachusetts. 1999. ISBN 0-201-65784-
8.

2. Leslie, R.; et. al. LaSRS++: An Object-Oriented
Framework for Real-Time Simulation of Aircraft.
AIAA Modeling & Simulation Technologies
Conference, Boston, August 1998, AIAA-98-4529.

3. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading,
Massachusetts. 1995. ISBN 0-201-63361-2.

4. Cunningham, K. Use of the Mediator Design Pat-
tern in the LaSRS++ Framework. AIAA Modeling
& Simulation Technologies Conference, Portland,
August 1999, AIAA-99-4336.

	ABSTRACT
	ACRONYMS
	INTRODUCTION
	AIRCRAFT DECOMPOSITION
	GENERALIZING AIRCRAFT BEHAVIOR
	Order of Execution (Execution)
	Invoke the Correct Behavior (Execution)
	Operational Situations (Execution)
	Establishing Communications (Input)
	Influencing Vehicle Behavior (Output)

	PUTTING IT ALL TOGETHER
	FUTURE WORK
	CONCLUSIONS
	BIBLIOGRAPHY

